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Abstract

Objective: The interest in studying gene—environment (GXE) interaction is increasing for complex diseases. A design combining both
related and unrelated controls (e.g., population-based and siblings) is proposed to increase the power to detect GXE interaction.
Study Design and Setting: We used simulations to assess the efficiency of the case—combined—control design relative to a classical

case—control study under a variety of assumptions.

Results: The case-combined-control design appears more efficient and feasible than a classical case—control study for detecting
interaction involving rare exposures and/or genetic factors. The number of available sibling controls per case and the frequencies of the
risk factors are the most important parameters for determining relative efficiency. Relative efficiencies decrease as the frequency of
the gene (G) increases. A positive correlation in exposure (E) between siblings decreases relative efficiency.

Conclusions: Although the case—combined—control design may not be efficient for common genes with moderate effects, it appears
to be a useful alternative in certain situations where classical approaches remain unrealistic. © 2004 Elsevier Inc. All rights reserved.
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1. Introduction

The interest in studying gene—environment (GXE) interac-
tion is increasing for complex diseases, particularly as mo-
lecular genetic technology improves. Moreover, detecting
genetically homogeneous subgroups who are “susceptible”
to specific environmental agents such as drugs, infectious
agents, or life habits (e.g., smoking, diet) may have a public
health impact through prevention or early screening actions
[1]. However, few study designs have been fully evaluated
for efficiency and power to detect gene—environment interac-
tion [2—4]. Among the designs (e.g., the case—control or
cohort design) that have already been evaluated for assessing
GXE interaction, most appear inefficient for detecting inter-
action involving rare environmental exposure(s) and/or ge-
netic factors, particularly for moderate values of the GXE
interaction effect. Among the approaches that allow for si-
multaneously assessing the main effects and the interaction
effect, usually either population-based or related controls
serve as the referent group.
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Designs using unrelated controls (e.g., population-based),
like the classical case—control design or the cohort design,
have the major disadvantage of very low power when the
GXE interaction involves rare exposure(s) and/or genetic
factors. Indeed, detecting interaction has been shown to re-
quire at least four times as many subjects as detecting a
main effect [5], and required sample sizes are often unat-
tainable. Meta-studies and meta-analyses may provide
approaches to rapidly increase sample sizes. However, al-
though this methodology has been applied to traditional epi-
demiology studies, specific methods to deal with complex
genetic issues have still to be fully developed [6]. Alternative
approaches for detecting interaction including multistage
designs [7,8] and flexible matching strategies [9,10] have
been proposed to study rare factor(s). The goal of these ap-
proaches is to increase the frequency of the rare factor
through oversampling [8]. One of these alternative designs,
the countermatching design appears to be more appro-
priate than most traditional methods for the study of GXE
interaction involving a rare factor [11]. However, its feasibil-
ity remains unrealistic for an event with a frequency of
less than 0.01 and a moderate interaction effect (i.e., <5).
Recently, flexible matching strategies with varying propor-
tions of a matching factor among selected controls were
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shown to increase the power and efficiency of case—control
studies to detect and estimate GXE interactions compared
to traditional frequency matching [9,10]. However, genetic
and environmental factors with frequencies of less than
5 and 10%, respectively, could not be evaluated because of
the small simulated sample sizes.

The use of unrelated controls to assess the genetic and
GXE effects has been questioned because of the potential
problem of population stratification [12]. This potential bias
from stratification was thus the motivation for some authors to
propose related controls as a more appropriate control group
for evaluating genetic factors. Witte et al. [13] showed that
using population-based controls was more efficient in de-
tecting a genetic main effect than using either cousins or
siblings, with sibling controls being the least efficient. In
contrast, sibling controls were the most efficient for detecting
a GXE interaction effect. This gain in efficiency decreased as
the frequency of the genetic factor increased [13]. Additional
studies [14] showed that the case—sibling design was most
efficient when studying a dominant gene, whereas a case—
parent design was preferred for a recessive gene. Other
authors have been motivated to use related controls to get
information about unknown within-family correlated factors
associated with both the studied disease and exposure
[15,16].

We propose a design using both related and unrelated
controls (simultaneously), named the case—combined—con-
trol design, to increase the power to detect GXE interac-
tion without increasing dramatically the number of required
study subjects. In addition, this design permits estimation
of both the GXE interaction and main effects. However, the
purpose of this article is to examine the power in detecting
interaction (which is limited to departure from multiplicative
joint effects of G and E in this exercise); thus, power to
detect main effects is not presented.

2. Methods

The population for the case—combined—control design
consists of cases and two types of controls, unrelated controls
and sibling controls. The unrelated controls may be popula-
tion-based or recruited from electoral rolls, random digit
dialing, neighborhoods, etc. Advantages and disadvantages
of these different sources of controls have been discussed
elsewhere [17-19].

Limited examinations have suggested that approximately
50% of cases may have appropriate sibling controls ([20,21],
unpublished data). For purposes of presentation, we use
this observation as the average number of available controls
per case (defined as F). Thus, in most of our evaluations of
the proposed design, F' = 0.5, meaning that approximately
half of the cases have a sibling control. We note that the
time period during which a sibling is eligible to be a control
should be the time period in which that sibling is also eligible
to be a case, should disease occur. If matching on age also

is required, it would be preferable to match sibling controls
from specific age categories [22,23].

For purposes of presentation, we make several assump-
tions about the study population. We assume homogeneity
between the odds ratios of the variables involved in the GXE
interactions using either of the two types of controls. We
further assume that there is no population stratification bias.
Finally, we assume that there is no difference in the distribu-
tion of variables of interest between cases who have sibling
controls vs. those cases without such sibling controls, and
that there is exchangeability of covariates of interest in cases
and sibling controls, that is, that the covariate distribution
does not depend on calendar time or birth order [24].
Then, combining the population-based and sibling control
groups leads to an increase in the frequency of G, and in
the frequency of E when there is a correlation between the
case—sibling controls’ exposures. Given the above assump-
tions, the proposed analysis for the case—combined—control
design is a matched analysis. As such, each matched set
would include a case, an unrelated control, and an unaffected
sibling of the case (for the approximately 50% of cases).

To assess the proposed design, we compared the case—
combined—control design to a classical case—unrelated—con-
trol study using simulations. The parameter of interest is
the interaction odds ratio (R;) defined on a multiplicative
scale. We define the parameters for modeling an interaction
between a genetic factor G and an environmental exposure
E below. Let

Pr = P(E) = prevalence of the environmental
factor E in the population
Ps = P(G) = prevalence of the genetic

factor G in the population

We further define the genetic factor G as follows. Let the
alleles at the locus be classified as A (mutant) or a (wild),
with population frequency p of the A allele and population
frequency ¢ for the a allele, where p + g = 1. We define
dominant and recessive inheritance models. For the domi-
nant model, AA and Aa represent subjects with G, and AA
represents subjects with G under the recessive model. Thus,
Pg = p* + 2 pq for the dominant model, and P = p* for
the recessive model.

Let G and E be independent events. Further, we let the
penetrance for G be incorporated directly into the risks
below. Then,

a = P(DIG",E") = risk of disease given
a person has G (G and E (E")
b = P(DIG",E™) = risk of disease given

aperson has G* and E~
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¢ = P(DIG™,E") = risk of disease given
aperson has G~ and E*

d = P(DIG,E™) = risk of disease given
a person does not have G or E (G ,E")

Finally,

Ry = odds ratio between E and disease
(among those not having G)

R = odds ratio between G and disease
(among those not exposed to E)

R; = interaction effect, defined on a multiplicative scale.

Table 1 shows the subgroups of cases and unrelated con-
trols at different risks for disease when there is a GXE
interaction under dominant and recessive genetic models
derived from Smith and Day [5]. Conditional on the case
genotypes, the genotype distributions of the case siblings
are calculated and shown in Table 2. When there is a correla-
tion in E between siblings, the probability that a case’s
sibling is exposed to E is defined as in Goldstein et al.
[25]. Details for the calculations are presented in the
Appendix.

3. Simulation studies

We calculated the expected distributions of the environ-
mental exposure and genetic susceptibility in cases, unre-
lated, and related controls according to the parameters
defined above and in Tables 1 and 2. Random numbers were
generated to determine the number of controls for each
case, that is, one unrelated control for all cases and one
related control for approximately 50% of the cases for
the case—combined—control study; one unrelated control
for all cases and a second unrelated control for approximately
50% of the cases for the classical case—control study when
F = 0.5. When F = 1.5, as another example, there are one
unrelated control and one related control for all cases and

Table 1

a second related control for approximately 50% of the cases
for the case—combined—control study. For the classical case—
control study, there are two unrelated controls for all cases
and a third unrelated control for approximately 50% of the
cases. When E and G were relatively common (e.g., both
>(0.05), we simulated 2,500 data sets with 1,000 cases: 1,000
unrelated controls: approximately 500 sibling controls when
F = 0.5. When E and G were relatively rare (e.g., either
<0.05) (or very rare; e.g., both <0.01), we simulated 1,000
data sets with 5,000 (or 10,000) cases: 5,000 (or 10,000)
unrelated controls: approximately 2,500 (or 5,000) sibling
controls. In addition, a second set of 1,500 or 7,500 (or
15,000) unrelated controls was matched to the cases to con-
duct a classical case—unrelated—control study. The related
controls are matched to the cases on family because they
are siblings and the unrelated control are matched to the
cases only on the number of strata. All subjects were simu-
lated using random numbers generated by the SAS func-
tion RANUNI (SAS, version 8, Cary, NC) to assign each
of the cases and controls to the different possible E and
G categories.

Each simulated case—control study was analyzed with
conditional logistic regression (CLR) using the program
STATA [26] with a binary variable for £ and a binary variable
for G (based on the genotypes and inheritance model). When
simulations of the combined design were performed under
the null hypothesis (Ho), the empirical Type I error rate
for R; approximated 0.05 suggesting that CLR is a reli-
able method for this design. To insure that CLR is an ade-
quate method for analyzing the combined design, we also
used an analytical approach to calculate the conditional Max-
imum Likelihood Estimate (MLE) of the ORs under Ho
using a robust Mantel-Haenszel formula [27]. For simplicity,
we generalized the correlation in G between relatives [25].
For any frequency of or correlation in G, the MLE for G
and GXE under Ho equaled 1, showing that the CLR ap-
peared unbiased (data not shown).

We defined the relative efficiency (RE) of the case—com-
bined—control study compared to a classical case—control
study, as the ratio of the variances of 3, that is, the variance of
B; of the classical case—control study divided by the variance
of B; of the case-combined—control study. We used the
same case:control ratio, that is, number of cases/number of

Subgroups of the population at different risk of disease when there is a GXE interaction according to Smith and Day [5]

Dominant model

Recessive model

Exposure Proportion of controls Relative disease risk Proportion of cases Relative disease risk Proportion of cases
E'[AA] Pgp’ Rg Rg R, (P p” Rg Rg R)/Z* Re Rg R (P p* R R R)/Z*
E" [Aa] Pg 2p(1—p) Re Rg Ry (Pg 2p(1—p) Rg Rg R)/Z Re (Pg 2p(1—p) Rp)/Z
E" [aa) P (1—p)* Rg Py (1=p)’ Rp/Z R P (1=p)’ Rp/Z
E™ [AA] (1=Ppp’ Rg (1=Pp) p* Re/Z Rg (1=Pp) p* Re/%
E" [Ad] (1=Pg) 2p(1—p) Rg (1=Pg) 2p(1—p) Re/Z 1 (1=Pg) 2p(1—p)/X
E [aa] (1=Pg)(1-p)’ 1 (1=Pp)(1=p)’/% 1 (1-Pp)(1-p)’/z

@ Under dominant model: £ = Py (p>+2p(1—p) Ri Rg R, + Pr (1—p)* Ry + (1—Pp)(p*+2p(1—p) Rg + (1—Pp)(1—p)*.
Under recessive model: £ = Py p* R Rg R, + P 2p(1—p) + (1—p*) R + (1—=Pp)(p®) Rg + (1—Pp)(1—p)* + 2p(1—p)).
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Table 2

Exposure and conditional genotype distribution of unaffected siblings according to case genotype for a dominant model. For a recessive model, for Aa
siblings, (1 —b) becomes (1 —d) and (1 —a) becomes (1 —c) for each case genotype; otherwise, the equations are identical to those for the dominant model

Case genotype

Unaffected sib [aa] [Aa] [44]
E” —dH+2 L—p?
Laal (p(4 - 1)+1)(1 — P —d) ((” 3+ )(1 — Pp(1 - (( 2 )(1 — Pp(1 —d)
" Y
o T [
_ _ 2
E~ [Ad] (p(22 p))(1 — Pyl — b) (p(l p) + 1)(] PO(1 — b) (1 ZP )(1 — Po)(1 — b)
E" [A 2 — 1- 1 1—p?
(Aal [P 2)p - (2 ey (52 )i -0
_ 5 2
s (Z)at = poct - ey 1))(‘ P = b) (5 = poa =
+ 2 ’
o o (e pa o [
With: d = 0.001; ¢ = — 8. Red Rell = 4P
‘ o 1+ Red—d 1+Red—d d(1 — b)(1 — ¢) + Reb(1 — d)’

When there is a correlation in E between siblings, Pr becomes w if the case is not exposed to E, and m if the case is exposed to E.

controls, in the two designs. Both designs give unbiased
estimates of R; indeed, the coverage of the confidence inter-
vals is at the nominal 95% level for all simulated scenarios
(data not shown). Thus, when RE > 1, the case—combined—
control design is more powerful than the corresponding
classical case—control design; when RE < 1, the case—com-
bined—control design is less powerful.

We studied the efficiency of the case—combined—control
study relative to a classical case—control study according to
different frequencies of G and E (Pg,Pg), the main effect of
G and E (Rg,RE), and the GXE interaction effect (R;). We
also examined different F' (ranging from 0O to 2 to represent
the average number of available sibling controls per case).
Finally, we assessed efficiency when there was a correlation
in E between siblings. Initial evaluations examined both
dominant and recessive genetic models (see frequencies and
main effects of G and E). The results showed similar patterns
for the two genetic models so subsequent evaluations (e.g.,
varying F and the correlation in E between siblings) were
restricted to the dominant model.

4. Results

We present estimates of relative efficiency (RE) in de-
tecting GXE interaction according to the parameters listed
above.

4.1. According to the frequencies of G and E

Fig. 1 presents RE for different frequencies of G for a
dominant and recessive gene with R; = 3, Rp =2, R; = 5,
P(E) = 0.2,and F = 0.5. The results show a rapid decrease
in RE as P(G) increases up to 0.2, after which the decrease is
slower and RE approaches 1 (0.99) when P(G) = 0.5 (data
not shown). For a dominant model, RE decreases from 1.26

when P(G) = 0.001 to 1.08 when P(G) = 0.2. For a reces-
sive model, RE is slightly lower than with a dominant
model, decreasing from 1.18 when P(G) = 0.001 to 1.07
when P(G) = 0.2. In contrast to the dramatic effect of P(G),
for most frequencies of E, there is little change in RE as
P(E) changes, regardless of the values of the other parame-
ters in the model (data not shown).
The gain and/or change in RE is insignificant for common
genes and moderate main effects. Indeed, when R; = Rg =
R =15, RE=1.05 when P(G) =0.01, and RE = 0.99
when P(G) =

4.2. According to the main effects of E and G and the
interaction effect

Table 3 presents the relative efficiencies for different
values of R (3,10 or 1.5,5) and Rg (1.5,5) for arare [P(G) =

131
1251

124
115"

1.1+

Efficiency (ratio of variances)

1.05 T T T T
0 0.05 0.1 0.15 0.2

P(G)

Fig. 1. Relative efficiency (RE) according to the frequency of G for a domi-
nant (bold line) and recessive gene (dashed line) with R, =5, Ry = 2,
Rg =3, P(E) = 0.2and F = 0.5. *RE is defined as the ratio of the variance
of B; of the classical case—control study design divided by the variance of
B; of the case—combined—control design.
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Table 3

Relative efficiency for GXE interaction detection according to main and interaction effects

For a rare gene; P(G) = 0.01; P(E) = 0.2

For a common gene; P(G) = 0.2; P(E) = 0.2

Rg Rz =3 R =10
R, =15 R/ =5 R, =15 R/ =5
Dominant gene

1.5 1.20 1.27 1.88 2.05

5 1.14 1.14 1.64 1.64
Recessive gene

1.5 1.12 1.16 1.52 1.62
1.08 1.08 1.38 1.36

Rg Rg=15 Rg=5
R, =15 R/=5 R =15 R, =5
Dominant gene

1.5 1.03 1.04 1.11 1.11

5 1.01 1.01 1.08 1.07
Recessive gene

1.5 1.02 1.03 1.09 1.10
1.01 1.01 1.07 1.06

0.01] and a common [P(G) = 0.2] dominant and recessive
gene with P(E) = 0.2 and R; = 1.5 or 5. For a rare gene,
the results show an increase in RE as R increases. The
relative efficiencies in general also slightly increase when
R;increases. As was previously described, when the genetic
model is recessive, RE show the same trend as for the domi-
nant model, but with reduced magnitudes for a given P(G).
For a common dominant or recessive gene, there is essen-
tially no effect of Rg, Rg, or R; on RE and there is also
very little gain in power compared with the classical case-
control design.

Table 3 also shows that for a given R;, RE decreases
as R increases. For example, for a rare dominant gene when
Rg = 3, RE decreases from 1.27 when R = 1.5 to 1.14
when R = 5 (and 1.05 when R = 10) for R; = 5.

4.3. According to the number of available sibling
controls per case

Fig. 2 shows the effect of the number of available sibling
controls per case on RE for a rare [P(G) = 0.01] and a com-
mon [P(G) = 0.2] dominant gene. For this evaluation, F
varies from 0-2 sib controls per case. All other parameters
are fixed with Rg =3, Rg=2, R;=5, P(E)y=0.2. A
1:(1+F) case—combined—control design is always more
powerful than a 1:(1+F) classical case—unrelated—control

1.5 4
1.45

=
IS
1

1.35 4

-
(%)
1

1.25

-
[ ]
1

1.15 4

Efficiency (ratio of variances)
-
P
1
A
1
1

1.05 "
1 T T T 1
0 0.5 1 1.5 2

Average number of available sibling-controls per case

Fig. 2. Relative efficiency (RE) according to the average number of avail-
able sibling controls per case for a rare [P(G) = 0.01; bold line] and
common [P(G) = 0.2; dashed line] dominant gene with P(E) = 0.2, R; = 3,
R:=2,R =5.

design. RE increases as the number of available siblings per
case increases. For example, when P(G) = 0.01, RE in-
creases from 1.14 when 25% of cases have one sibling control
to 1.40 when 100% of cases have one sibling control and
to 1.45 when 100% of cases have two sibling controls. In
other words, a classical 1:1.5 case—control design requires
1.25 times more cases than a 1:1.5 case—combined—control
design. However, there is little gain in power compared with
the classical case—control design for a common gene
[P(G) = 0.2].

4.4. According to the correlation between sibs’
exposure (E)

Fig. 3 examines the RE according to different values
of P(E) with Rg =3, R = 1.5, R, =15, and P(G) = 0.01
for four different correlations of E between sibs’ exposure
(ORgc = 1,2,3,5). When there is no correlation in E expo-
sure between sibs (ORgc = 1), RE slightly decreases as P(E)
increases, but there is little overall change in RE [RE of
1.32 at P(E) = 0.05 vs. 1.26 at P(E) = 0.5]. In contrast,
when ORgc > 1, that is, when there is a correlation in E
between sibs’ exposures, there is a more pronounced de-
crease in RE as P(E) increases. For higher values of OR,
RE < 1 when P(E) = 0.5 (data not shown). In addition, as
ORgc increases, RE decreases slightly from 1.32 when

1.35

=
W

Efficiency (ratio of variances)
— o —
> o= =R
wn ok wm () wn

p—

T T T a4 1

0.05 0.15 0.25 0.35 045 0.55
P(E)

Fig. 3. Relative efficiency (RE) according to different values of P(E) for
four different correlations of E between sibs’ exposure (ORgc = 1, bold line;
ORgc = 2, diamond line; ORgc = 3, starred line; ORgc = 5, circled line)
with Rg = 1.5, Rg = 3, R; = 5, and P(G) = 0.01.
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ORgc =1 to 1.21 when ORgc =5 for P(E) = 0.05. RE
decreases more sharply for higher frequencies of P(E).
For moderate main and interaction effects, for example,
Rr = R; = R; = 1.5, there is again very little gain in RE.
In addition, there is marginal change in RE as ORgc or
P(E) increases. Finally, strong E correlation can induce rela-
tive efficiencies less than 1 [e.g., ORgc = 5 and P(E) = 0.2]
(data not shown).

4.5. Feasibility of the case—combined—control design

To evaluate the feasibility of the case—combined—control
design in GXE interaction assessment, power for different
sample sizes are calculated for different values of R; Rg,
Rg, with F = 0.5, P(E) = 0.2, and ORgc- =1 for a rare
[P(G) = 0.01] and a common [P(G) = 0.2] dominant gene.
Power is calculated using a two-sided test at the 5% level
for type I error. Table 4 shows power calculations for a
classical 1:1.5 case—control design (named traditional) and
a 1:1.5 case—combined—control design (named combined).
When G is rare and GXE interaction is moderate (e.g.,
R; = 1.5), the required sample size is very large (>20,000
cases and 30,000 controls) reaching unrealistic numbers.
Although the case—combined—control design is more effi-
cient than the traditional design, the needed sample size is
only realistic when there are strong GXE interaction (e.g.,
R;=3) and G (e.g., R = 3) effects. For example, if one
were interested in studying the interaction between muta-
tions in the Ataxia-Telangiectasia (ATM) gene (estimated
prevalence for truncating mutations of about 1% in the gen-
eral population and a three- to fourfold increased risk of

Table 4

breast cancer) [28] and ionizing radiation of the chest
(R~1.5), a traditional case—control study would require
3,180 breast cancer cases and 4,770 controls (i.e., a total of
7,950 women) to detect an interaction of 3 with 81% power.
In contrast, the case—combined—control design would require
2,500 breast cancer cases, 2,500 unrelated (population/hospi-
tal) controls and about 1,250 unaffected sisters (i.e., a total
of 6,250 women); that is, 1,700 (about 21%) subjects less
than for the traditional case—control study. When R; = 5 and
power = 80%, the sample size decreases to 1,360 breast
cancer cases and 2,040 controls (i.e., 3,400 women in total)
in the traditional case—control study and 1,020 breast cancer
cases, 1,020 unrelated controls, and about 510 unaffected
sisters (i.e., 2,550 total women), 850 women or about 25%
fewer subjects than in the traditional design. To further illus-
trate these examples, Table 5 shows approximations of the
expected cell counts for the joint distribution of the ionizing
radiation exposure (E) and the ATM genotype (G) in cases,
unrelated controls, and sibling controls. The proportion of
cases and controls (unrelated or sibling) jointly exposed to
ionizing radiation and having a mutation (i.e., E*G") is
small (e.g., 2.4, 0.2, and 0.5%, respectively, when R; = 3).
When G is common [e.g., P(G) = 0.2], the required sample
size remains realistic (=2,200 cases and 3,300 controls).
In general, though, the gain in power for the combined design
relative to the traditional design is less for the common gene
than for the rare gene. Indeed, to illustrate, if one were now
interested in steroid hormone metabolism genes (prevalence
of polymorphisms of about 0.2 and Rs; = 1.5) and their
potential interactions with reproductive factors in breast

Power for GXE interaction detection (two-sided test at the 5% level) according to different main and interaction effects for a traditional case—control

study [traditional] and a case—combined—control study [combined]

A rare dominant gene; P(G) = 0.01; P(E) = 0.2

A common dominant gene; P(G) = 0.2; P(E) = 0.2

RG:3;RE:1.5;R1:5

No. of cases 500 750 1,000 1,250 1,500

Traditional 22 43 62 77

Combined 33 61 79 90
RG:3;RE: 15,R1:3
No. cases 1,700 2,100 2,500 2,900 3,300
Traditional 50 61 70 77
Combined 63 73 81 88
RG= 15, RE: 15,R1:3
No. cases 2,000 2,500 3,000 3,500 4,000
Traditional 51 62 71 78
Combined 55 66 75 83
RG = 3; RE = 15, R] =15
No. of cases 15,000 18,000 21,000 24,000 27,000
Traditional 57 63 71 73

Combined 66 72 82 86

Rc=15Rg=15R =15

No. of cases 20,000 25,000 30,000 35,000 40,000

Traditional 60 68 76 84
Combined 61 73 77 85

RGZB;REZI.S;R[:3

No. of cases 150 250 350 450
Traditional 46 70 83 92
Combined 52 76 87 95
RG = 15, RE = 15, R, =3
No. of cases 200 300 400 500
Traditional 61 78 90 95
Combined 62 83 92 95
RG=3; RE: 15, R[: 1.5
No. cases 1,600 1,800 2,000 2,200 2,400
Traditional 64 70 73 78 81
Combined 70 75 75 83 85
RG= 15, RE: 15, R[: 1.5
No. of cases 1,400 1,600 1,800 2,000 2,200
Traditional 58 64 69 74 78
Combined 59 65 71 76 80

Percent power shown for the number of cases listed under each traditional and combined model comparison.
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Table 5

Tllustrative examples from breast cancer: expected cell counts for the joint distribution of the exposure (E) and the genotype (G) in cases, controls (unrelated and sibling) in each design

Cases/controls

Total

Siblings
E- G

Unrelateds
E G

Cases

ETG*

E" G

E G*

ETG*

E" G~

E G*

ET G*

1.5;R; =3 (1-P) = 0.81

67 (2.1%) 830 (26.1%)

E" G
52 (2.1%) 652 (26.1%)

E-G*

Rare gene: P(G) = 0.01; P(E) = 0.2; R

Traditional

Design

3, Rp =

3,180/4,770
2,500/3,750

944 (19.8%) 10 (0.2%)

38 (0.8%)

73 2.3%) 3,778 (79.2%)

58 (2.3%)

2210 (69.5%)
1,738 (69.5%)

7 (0.5%)

27 (2.2%) 243 (19.5%)

5(0.2%) 973 (77.8%)

20 (0.8%) 495 (19.8%)

1,980 (79.2%)

Combined
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=5(1-p)=0.80
53 (3.9%)

15, R[

29 (2.1%) 348 (25.6%)
21 (2.1%) 261 (25.6%)

Rare gene: P(G) = 0.01; P(E) = 0.2; Rg

Traditional

1,360/2,040

16 (0.8%) 404 (19.8%) 4 (0.2%)

1616 (79.2%)

930 (68.4%)

98 (19.3%) 4 (0.7%) 1,020/1,530

2 (0.2%) 394 (77.2%) 14 (2.8%)

808 (79.2%) 8 (0.8%) 202 (19.8%)

40 (3.9%)

698 (68.4%)

Combined

0.83

1.5, R =3 (1-P)

Common gene: P(G) = 0.2; P(E) = 0.2; Rg = 1.5; Rg

Traditional

342/513
300/450

82 (16.0%) 20 (4.0%) —

48 (16.0%)

59 (17.3%) 59 (17.3%) 67 (19.5%) 328 (63.9%) 83 (16.1%)
52 (17.3%) 58 (19.5%) 48 (16.0%)

52 (17.3%)

157 (45.9%)
138 (45.9%)

86 (57.4%) 34 (22.6%) 22 (14.4%) 8 (5.6%)

12 (4.0%)

192 (63.9%)

Combined

1.5; R, = 1.5 (1-PB) = 0.80

1,171 (50.9%) 442 (19.2%) 439 (19.1%) 248 (10.8%) 2,205 (63.9%) 555 (16.1%) 552 (16.0%)
1,120 (50.9%) 422 (19.2%) 420 (19.1%) 238 (10.8%) 1,406 (63.9%) 354 (16.1%) 352 (16.0%)

Common gene: P(G) = 0.2; P(E) = 0.2; Rg = 1.5; Rg

Traditional

2,300/3,450
2,200/3,300

138 (4.0%)

88 (4.0%) 660 (60.0%) 220 (20.0%) 165 (15.0%) 55 (5.0%)

Combined

cancer (Rg~1.5) [29], then when R; = 3, power will be
83% with 342 breast cancer cases and 513 controls in
the traditional design, and 300 breast cancer cases, 300 unre-
lated controls, and about 150 unaffected sisters in the com-
bined design. In this example, the combined design required
12% fewer women than the traditional design. The joint
distribution of a reproductive factor (E) and the steroid hor-
mone metabolism genotype (G) in cases, unrelated controls,
and sibling controls is further illustrated in Table 5 for both
R;=1.5and R; = 3.

5. Discussion

The case—combined—control design using both popula-
tion-based and related-controls for studies to detect GXE
interaction is more efficient than a classical case—control
study for interaction detection involving less common events
(i.e., frequencies <0.2). The parameters that are the most
important for determining relative efficiency are the number
of available sibling controls per case and the frequencies of
the genetic factor of interest. Relative efficiencies decrease as
the frequency of G increases. Dominant and recessive genetic
models show similar patterns but with smaller RE gains for
the recessive model. Also, as a correlation in E exposure
between sibs increases, RE decreases. This decrease is
greater for higher frequencies of E. Finally, for common
genes and moderate main and interaction effects (e.g., Rp =
Rg = R; = 1.5) with or without a correlation in E between
siblings, the case—combined—control design is often less ef-
ficient than a classical case—control study.

However, to fully evaluate a study design, efficiency
needs to be complemented by feasibility as measured by the
required sample size. When G is rare [i.e., P(G) = 0.01] and
the interaction value is small (i.e., <3), the case—combined—
control design is more efficient than a classical case—control
design but the corresponding required sample size is very
large and remains prohibitive (i.e., >20,000 cases and
30,000 controls). For smaller frequencies of G, as might be
observed for major genes in cancer or other chronic diseases,
the needed sample size might be realistic only when the
environmental factor is common and the interaction effect
is high (i.e., =5). For more common genetic factors [i.e.,
P(G) = 0.2], the required sample size is realistic but the gain
in relative efficiency of the case—combined—control design
may be minimal. The range of scenarios where the case—
combined—control design is both relatively efficient and
feasible may thus appear narrow. However, this interval
includes numerous polymorphic genes and inside this
range, this design appears to be a useful alternative to study
GXE interaction where some classical approaches remain
unrealistic.

Previous investigators have argued against using multiple
control groups. If one control group is superior to all practical
alternatives, then efforts should not be wasted on collecting
controls from multiple sources with multiple required infra-
structures [23]. However, there are situations when using
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multiple control groups might be warranted. In this article,
we have presented a modification to the case—control design
that ascertains two different types of controls—related and
unrelated controls. The purpose of selecting two control
groups is to maximize the efficiency and feasibility for exam-
ining GXE interactions. This design requires several assump-
tions including homogeneity between the two types of
controls with respect to the variables involved in the interac-
tions, no population stratification bias, no difference in the
distribution of variables of interest between cases with and
without sibling controls, and exchangeability of the case—
sibling covariates under investigation.

For purposes of presentation and ease of comparison,
conditional logistic regression analyses were performed
on simulated data that included a correlated genetic and envi-
ronmental factor in cases and sibling controls. Under this
scenario, the estimates were unbiased. However, in real situa-
tions with greater complexity, bias may result if important
correlations are ignored. In such situations, other analytic
approaches, such as polytomous regression, might be re-
quired. In addition, incorporating weighting into the analyses
to account for the differences in the ascertainment of the
two control groups, may require fewer assumptions than
conditional logistic regression and modify the precision.
Examination of the reliability and validity of conditional
logistic regression when there is deviation from the re-
quired assumptions and evaluation of different analytical
approaches is planned.

The critical assumptions for this design are not testable
before the data has been collected. If one or more assump-
tions were not valid, the proposed analysis for examining
GXE interaction would not be appropriate. For example, if
there is evidence for heterogeneity in the interaction odds
ratios from the two types of controls, then it is not appropriate
to conduct a combined analysis and alternative analytic strat-
egies such as using polytomous regression or stratification or
performing separate analyses will be required. In addition,
if the environmental covariates in cases and sibling controls
are not exchangeable or there are differences in the distribu-
tion of variables of interest between cases with and without
sibling controls, then the case—sibling control analysis will
be subject to bias [24,25]. The extent of this bias is currently
unknown. These issues will be further investigated.

There has been much discussion in the literature about pos-
sible biases from using unrelated controls to examine gene—
disease associations and/or gene—environment interactions
(for review, see [30,31]). Although this potential population
stratification bias could produce problems in the case—com-
bined—control design, recent studies have shown that, in
general, population stratification produces a minimal and
tolerable bias [30,32]. For the rare study in which population
stratification bias is a major concern, minimization of po-
tential bias may be accomplished by controlling for ethnicity
[33] or by using approaches such as genomic control [34]
or modeling population substructure [35,36].

Other study designs and analytical strategies have been
proposed to examine interaction involving rare factors (e.g.,
[7-10,13,37-40]). For approaches that permit estimation of
both main and interaction effects, the principle of these
designs is similar to the case—combined—control design, that
is, increasing the frequency of the rare factors through
oversampling, to increase the power of the study. One group of
designs used unrelated controls. Flexible matching strategies
[10] with varying proportions of an environmental matching
factor among selected controls increased the power and effi-
ciency to detect GXE interactions in case—control studies.
The highest efficiency was observed for a rare exposure
that was a strong risk factor. However, this design is not
recommended if the main effect of the matching factor has
not been thoroughly studied or if one is interested in additive
risk interactions. Sturmer and Brenner [9,10] were unable to
fully evaluate rare factors with prevalences <0.05; thus, the
efficiency, and more importantly, the feasibility of this design
for these scenarios is not available.

Multistage designs, including ‘“‘countermatched de-
signs” [7,41] and “balanced designs” [8,39,42,43] also have
been proposed to study rare factors. These designs employ
methods of sampling from an at-risk population for nested
case—control studies. In the balanced design, one selects
both cases and controls to oversample the rare factor of
interest. The oversampling is taken into account in the
analysis to obtain unbiased estimates of the effects. The
efficiency for estimating exposure covariate (e.g., GXE) in-
teraction has not been fully investigated for the balanced
design. More extensive efficiency evaluation has been con-
ducted using the countermatched design [11]. Limited direct
comparisons between the balanced and countermatching
designs, however, showed similar efficiencies in interaction
estimation [41,43].

The second group of designs used related subjects as
controls. Various relative designs have been proposed for
examining main effect(s) and GXE interactions including
case—parent (e.g., [14,37,38,44]), case—cousin—control [12,13,
37,40], and case—sibling—control [12-14,37,40]. Few such
designs have been evaluated for GXE interaction assessment
[12-14,40]. In general, relative control subjects were less
efficient than population-based control subjects for detecting
the genetic factor main effect, except when cases with a
positive family history were oversampled [40]. However,
relative control subjects were the most efficient group for
detecting interaction. The gain in efficiency, however,
decreased as the frequency of G increased as we also ob-
served in the case—combined—control design. A major differ-
ence between these prior studies and the current article is
the a priori defined number of siblings per case. These
prior studies assumed 1:1 or 1:2 case:sibling—control ratios.
Limited examinations have suggested that approximately
50% of cases may have appropriate sibling controls ([20,45],
unpublished data). Thus, the 1:1 or 1:2 matching may be
unrealistic in many situations or may lead to the exclusion
of numerous cases.
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Theoretically, the case—combined—control design would
be useful for examining interaction. In practice, however,
we may find that there are few situations where combining
control groups for all variables of interest are possible. Future
studies will examine whether the case—combined—control
design would still offer advantages over a single case—unre-
lated—control or case-related—control study design if com-
bining the control groups were not appropriate. Although
the case—combined—control design has increased complexity
for control recruitment, it has the potential to exploit the
collection of two different types of controls, related and
unrelated. Using siblings as controls substantially increases
the power for some schemas of GXE interaction. Adding
unrelated controls counterbalances the loss of efficiency
from a design that recruits only sibling controls (because of
the availability of only a fraction of sibling controls and the
major assumptions required for these sibling controls).
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Appendix A

Details of calculations are given below.

Probability that the case’s sibling has G

Table 2 shows the conditional probability that a case’s
sibling has G, given the case has G [i.e., P(Gs = G + |G =
G + )] for the three case genotypes. For a dominant model,
exposure to G occurs when a subject is AA or Aa. For a
recessive model, exposure to G is equivalent to AA only.
To determine the probability for each sibling control, we
incorporate Pg and the risk of disease given the E and G
status of each control. For example, under a dominant
model with case [aa], P(Sib = E™, aa, D" ICase = aa) =

(p(g — 1) + 1)(1 — Pyl —d)

where d = 0.001, baseline disease risk.
A similar approach was used for the recessive model.

Probability that the cases’ sibling is exposed to E

We define m as the probability that a case’s sibling is
exposed to E if the case is exposed to E [P(Eg = ETIEc =
E™)]. Similarly, we define (1 — w) as the probability that a
sibling has not been exposed to E given the case has not
been exposed [P(Es = E"|[Ec = E )] [23].

Given exchangeability for E, the frequency of E is the
same in the case and her sibling control, thus uniquely
determining the joint exposure distribution between the two
siblings by constraining the marginal probabilities to be
equal. Thus,

w=——"
1 - PE
We use the following equation to define the exposure
relationship between a case and his/her sibling control,
ORgcPg

m = .

When ORgc = 1, m = Pg, and there is no correlation
in E between siblings. We examined the following scenarios,
ORgc =1, 2, 3, and 5. We incorporated ORgc into the sib-
lings’ probabilities (see probabilities that the case’s sibling
has G above) by adding m, 1 — m, w, or 1 — w to the
equation, as appropriate, depending on the E status of
the case and matched sibling. For example, if Ec = E~
and E; = E*, under a dominant model with case [aal],

P(Sib = E*, aa, D" ICase = E", aa)
= (p(’i - 1) + l)w(l )

Similarly,
P(Sib = E*, AA, D" ICase = E*, AA)

:(<1+_P>2

) )m(l —a).
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